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Abstract. In this paper, we present a new extreme point algorithm to solve a mathematical pro-
gram with linear complementarity constraints without requiring the upper level objective function of
the problem to be concave. Furthermore, we introduce this extreme point algorithm into piecewise
sequential quadratic programming (PSQP) algorithms. Numerical experiments show that the new
algorithm is efficient in practice.
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1. Introduction

A mathematical program with equilibrium constraints (MPEC) [5] is a mathemat-
ical program in which the constraints include parametric variational inequalities.
This nonconvex, nonsmooth and hence very difficult problem has been attracting
more and more attention of the operations research community due to its extensive
application background and its close relationship with other branches of opera-
tions research. It generalizes the bilevel programmingproblems (BLPP) in which
the lower level problem is convex (see [14] for a review about BLPP and [11]
for some general introductions to BLPP). So, it is also called generalized bilevel
programming problem by some researchers [10, 16].

Due to its complicated structure, the analysis of optimality conditions and the
development of algorithms for MPEC encounter more difficulties than that for an
ordinary nonlinear programming problem. However, some progress has been made
and several new algorithms have been proposed in recent years. Among them,
implicit programming approaches [1, 3, 12] were proposed to solve an important
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type of MPEC in which the solution set of the parametric variational inequalities
in the constraints is a singleton for any fixed parameter value. The penalty interior-
point algorithm [8] and smoothing methods [2, 4, 6] are all globally convergent
under some suitable conditions, while piecewise sequential quadratic programming
methods (PSQP) [8, 9, 13] are locally superlinearly convergent without requiring
the strict complementarity condition. Numerical tests [7] show that these PSQP
methods indeed converge very fast. For a MPEC whose data functions are linear
(either in linear complementarity constraints or in affine variational inequality con-
straints), extreme point algorithms [15] are very reasonable and effective. However,
existing extreme point algorithms can only deal with the MPEC in which the upper
level objective function is concave.

In this paper, we concentrate on mathematical program with linear complement-
arity constraints (MPLCC). In this case, the feasible solution set of the problem
consists of some faces of a polyhedral set. We propose a new extreme point al-
gorithm to solve MPLCC without requiring the upper level objective function of
the problem to be concave. At each iteration of the algorithm, we only need to
find an extreme direction or an point which is adjacent to a feasible extreme point
of MPLCC and satisfies some request, even if the iterative point may not be an
extreme point. The extreme point to be found must satisfy that either this point
has a smaller objective function value (we call this point a feasible descent ex-
treme point), or the direction from the present iterative point to this extreme point
is a feasible descent direction (we call this direction a feasible descent extreme
point direction), while the extreme direction to be found must satisfy that from the
present iterative point this extreme direction is a feasible descent direction (we call
this descent direction a feasible descent extreme direction). In PSQP algorithms, it
is needed to find a fesible descent face for a feasible solution of the problem at each
iteration. Our extreme point algorithm can also be used for this purpose. As a result,
some computing effort can be saved and the efficiency of PSQP algorithms can be
enhanced. Moreover, our algorithms do not require any constraint qualification to
hold at iterative points. Our numerical experiment shows that the new algorithms
are very efficient.

The paper is organized as follows. Some preliminaries are introduced in Section
2. In Section 3, our extreme point algorithm for solving MPLCC is presented and
an example is given to illustrate this algorithm. The convergence of this algorithm
is analyzed in Section 4 and a subproblem of the algorithm is discussed in Section
5. In Section 6, we introduce the extreme point algorithm proposed in Section 3
into PSQP algorithm for solving MPLCC. Results of some numerical experiments
are listed in Section 7. Finally, a few conclusions are given in Section 8.
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2. Preliminaries

In this paper, we consider the following mathematical program with linear comple-
mentarity constraints (MPLCC) as follows:

min
x,y

F (x, y)

s.t. A1x + B1y 6 b1,

A2x + B2y 6 b2,

yT (b2− A2x − B2y) = 0,

y > 0,

whereF : Rn+m → R is convex and continuously differentiable,b1 ∈ Rp, b2 ∈
Rm, A1 ∈ Rp×n,A2 ∈ Rm×n, B1 ∈ Rp×m andB2 ∈ Rm×m.

Denote the feasible solution set of MPLCC byF . A feasible solution (̄x, ȳ)
of MPLCC is called an optimal solution to MPLCC, ifF(x, y) for any (x, y) ∈
F , (x̄, ȳ) ∈ F is called a locally optimal solution to MPLCC if there is a neigh-
borhoodN(x̄, ȳ) of (x̄, ȳ) such thatF(x̄, ȳ) 6 F(x, y) for any (x, y) ∈ F ∩
N(x̄, ȳ).

When the complementarity condition is waived, we denote the relaxed feasible
region byD, i.e.,

D = {(x, y)|A1x + B1y 6 b1, A2x + B2y 6 b2, y > 0}.
In [9], an interesting result about the property ofD was given and this result

plays an important role in the algorithm proposed in this paper.

LEMMA 2.1 [9]. The feasible setF of MPLCC is a union of some faces of D.

In this paper we use the symbolE(·) to represent the set of extreme points of
the set to be concerned. In order to state our algorithm concisely, we assume that
the following condition holds throughout this paper.

ASSUMPTION 2.1. The problem MPLCC has an optimal solution and for any face
G of D we haveE(G) 6= ∅.

Before ending this section, we recall the definition of two adjacent extreme
points in a polyhedral setF . Assumez1 andz2 are extreme points of a polyhedral
setF . If the convex hull conv{z1, z2} of the set{z1, z2} is a face ofF , then we call
z1 andz2 two adjacent extreme points ofF .

3. An Extreme Point Algorithm for MPLCC

As we know, at least one local minimizer of MPLCC is an extreme point ofD if the
objective functionF is concave. Unfortunately, this conclusion is not true whenF
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is not concave and the locally optimal solutions are often not extreme points ofD.
In this section, we propose a new extreme point algorithm to solve MPLCC. Our
new algorithm utilizes a special property of an extreme point which is related to
the iterative point at each iteration.

For every nonempty convex subsetG of D, denote byL(G) the set of extreme
directions ofG with unit length. For any(x̄, ȳ) ∈ E(D), denote byA(x̄, ȳ) the
set of all extreme points which are adjacent to(x̄, ȳ) in D. We denote the smallest
face ofD containing(x̄, ȳ) by S(x̄, ȳ), and the smallest face ofD containingG by
S(G).

In each iteration of the following algorithm, the iterative point may not be an
extreme point ofD. We choose an extreme pointz̄ of the smallest faceS(xk, yk)
of D, which includes the iterative point(xk, yk). Then, we search extreme points
adjacent to the point̄z and extreme directions ofD in order to find a feasible
descent point or a feasible descent direction. If no feasible descent point of feas-
ible descent direction has been found, the algorithm stops and a locally optimal
solution has been found, otherwise we can find the next iterative point by solving
a subproblem.

ALGORITHM 3.1.

Step 0. Find an initial fesible solution(x0, y0) of MPLCC with(x0, y0) ∈ arg min
{F(x, y)|(x, y) ∈ S(x0, y0)} and letk = 0.

Step 1. Let z̃k ∈ E(S(xk, yk)) and setAk = ∅.
Step 2. If A(z̃k) ∩ F = Ak , then go to Step 7.
Step 3. Take az̄ ∈ (A(z̃k) ∩ F ) \Ak .
Step 4. If F(z̄) < F(xk, yk), then set(xk+1, yk+1) = z̄, k = k + 1 and go to Step

1.
Step 5. If (z̄− (xk, yk))T∇F(xk, yk) > 0, then setAk = Ak ∪{z̄} and go to Step 2.
Step 6. If 1

2((xk, yk)+ z̄) /∈ F , then setAk = Ak ∪ {z̄} and go to Step 2; otherwise
go to Step 12.

Step 7. LetLk = ∅.
Step 8. If Lk = L(D), then stop.
Step 9. Take az̄ ∈ L(D) \ Lk.
Step 10. If {(xk, yk)+ λz̄|λ > 0} * F , then letLk = Lk ∪ {z̄} and go to Step 8.
Step 11. If z̄T∇F(xk, yk) > 0, then letLk = Lk ∪ {z̄} and go to Step 8.
Step 12.Choose a feasible faceT of D satisfying{(xk, yk), z̄} ⊆ T ⊆ F if z̄ ∈

E(D) or (xk, yk) + z̄ ∈ T ⊆ F if z̄ ∈ L(D), and then solve the following
subproblem(MP)T

min
x,y

F (x, y)

s.t. (x, y) ∈ T .
Let (xk+1, yk+1) ∈ arg min{F(x, y)|(x, y) ∈ T }, k = k+1 and go to Step 1.
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As we know, the difficulty to apply the extreme point technique to the problem
MPLCC with nonconcave upper level objective function is that the iterative point
may not be an extreme point ofD. In Algorithm 3.1, we overcome this difficulty
by finding an extreme point of the smallest face ofD, which includes the iterative
point.

In thek-th iteration of the above algorithm, we implicitly enumerate the extreme
directions ofD and the extreme points adjacent to an extreme point of the smallest
face ofD, which contains the iterative point. If a feasible descent extreme point or a
feasible descent extreme point direction or a feasible descent extreme direction can
be found, then the next strictly descent iterative point can be obtained, otherwise
we can conclude that this iterative point is a locally optimal solution of MPLCC.

Algorithm 3.1 can be roughly divided into four parts, i.e., Step 0, Steps 1–6,
Steps 7–11 and Step 12.

In Step 0, we find a feasible solution of MPLCC. This olution must be a minim-
izer of the upper level objection functionF(x, y) in the smallest face ofD, which
includes the solution.

In the second part of the algorithm, we search in the setA(z̃k) ∩ F in order to
find a feasible descent extreme point or a feasible descent extreme point direction,
wherez̃ ∈ S(xk, yk). First, we find ãz in S(xk, yk) and letAk be empty.Ak is used
to store the searched points inA(z̃k)∩F . Then, we implicitly enumerate all points
in A(z̃k)∩F . For a point̄z in the setA(z̃k)∩F , if F(z̄) < F(xk, yk), then we set̄z
as the next iterative point; otherwise we will check whetherz̄ can provide a descent
direction. If this point can not provide a descent direction, we will try to search the
next point inA(z̃k)∩F ; otherwise we will further check if this descent direction is
feasible by verifying whether12((xk, yk)+ z̄) ∈ F . If this direction is not feasible,
we again try another point inA(z̃k)∩F ; otherwise a feasible descent direction has
been found which will be used to find the next iterative point in the fourth part of
the algorithm. If we have searched all points inA(z̃k) ∩ F and neither the next
iterative point nor a feasible descent direction is found, then we will proceed to the
next part of the algorithm.

In the third part of the algorithm, we search the extreme directions ofD in order
to find a feasible descent direction. The process of this part is similar to the second
part of the algorithm. If a feasible descent direction is found in this part, then we
will use it to produce the next iterative point in the fourth part of the algorithm;
otherwise the algorithm stops and a locally optimal solution of MPLCC has been
found.

If a feasible descent direction has been found in part two or part three, then
we must have another feasible point in this direction from(xk, yk), and we simply
construct a feasible faceT of D which includes this point and(xk, yk). We search
an optimal solution ofF in T to get the next iterative point.

Before discussing the finite convergence of the algorithm, we illustrate this
algorithm by a numerical example.
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EXAMPLE 3.1. Consider the following quadratic bilevel programming problem:

min
x1,x2,y

1

2
(x1 − 1)2+ 1

2
(x2 − 2

5
)2+ 1

2
(y − 4

5
)2

s.t. y ∈ arg min

{
1

2
y2 − y − x1y + 3x2y|0 6 y 6 1

}
,

06 x1 6 1,06 x2 6 1.

We may change this problem into a MPLCC by replacing the lower level program-
ming problem by its KKT optimality conditions.

min
x1,x2,y,u1,u2

1

2
(x1− 1)2 + 1

2
(x2− 2

5
)2+ 1

2
(y − 4

5
)2

s.t. y − x1+ 3x2 − u1+ u2 = 1,

u1y = 0

u2(1− y) = 0,

06 y 6 1,

06 x1 6 1,

06 x2 6 1,

u1 > 0,

u1 > 0.

Take (x1, x2, y, u1, u2) = (1,0,1,0,1) as the initial iterative point. It is easy to
verify that (1,0,1,0,1) is an extreme point ofD. In the first iteration, we get a
feasible descent extreme point (1,1

3,1,0,0) ofD. In the second iteration, the extreme
point (1,23,0,0,0) ofD is found to get a feasible descent direction. We choose

T = {(x1, x2, y, u1, u2)|y − x1+ 3x2 = 1, u1 = 0, u2 = 0,

x1 = 1,06 x2 6 1,06 y 6 1}.
T is a face ofD satisfying{(1,13,1,0,0), (1,23,0,0,0)} ⊆ T ⊆ F . Solve the corres-
ponding quadratic programming problem(QP )T :

min
x1,x2,y,u1,u2

1

2
(x1− 1)2+ 1

2
(x2− 2

5
)2+ 1

2
(y − 4

5
)2

y − x1+ 3x2 = 1, u1 = 0, u2 = 0,

x1 = 1,06 x2 6 1,06 y 6 1,

we get the next iterative point (1,2
5,4

5,0,0). In the third iteration, there is no ex-
treme point which is adjacent to an extreme point of the smallest face containing
(1,25,4

5,0,0) and provides a feasible descent direction. So, the algorithm terminates
at the locally optimal solution (1,2

5,4
5,0,0) of the MPLCC problem. In this way

we obtain a locally optimal solution (1,2
5,4

5) of Example 3.1. In fact, (1,2
5,4

5) is a
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global minimizer of the quadratic bilevel programming problem discussed in this
example.

4. Finite Convergence

First, we prove some required lemmas.

LEMMA 4.1. Let (x̄, ȳ) ∈ F . If F(x̄, ȳ) 6 F(z) for all z in every face T of D
satisfying(x̄, ȳ) ∈ T ⊆ F , then(x̄, ȳ) is a locally optimal solution of MPLCC.

Proof. Suppose thatF(x̄, ȳ) 6 F(z) for any faceT of D satisfying(x̄, ȳ) ∈
T ⊆ F and anyz ∈ T . If (x̄, ȳ) were not a locally optimal solution of MPLCC,
there would be a sequence{(xi, yi)} in F converging to(x̄, ȳ) and satisfying

F(xi, yi) < F(x̄, ȳ), for i = 1,2, · · · .
BecauseD has only a finite number of faces, there must be a subsequence{(xik , yik )}
of {(xi, yi )} and a faceT̄ of D such that

S(xik , yik ) = T̄ , for k = 1,2, · · · .
Therefore,(x̄, ȳ) ∈ T̄ andS(x̄, ȳ) ⊆ T̄ . From Lemma 2.1, we havēT ⊆ F . This
contradicts the assumption of this lemma. So(x̄, ȳ) is a locally optimal solution of
MPLCC. 2
LEMMA 4.2. Let (x̄, ȳ) ∈ F with (x̄, ȳ) ∈ arg min{F(x, y)|(x, y) ∈ S(x̄, ȳ)}
and z̄ ∈ E(S(x̄, ȳ)). If (z− (x̄, ȳ))T∇F(x̄, ȳ) > 0 for anyz ∈ A(z̄)∩F satisfying
1
2(z + (x̄, ȳ)) ∈ F , andzT∇F(x̄, ȳ) > 0 for anyz ∈ L(D) with (x̄, ȳ) + z ∈ F ,
then(x̄, ȳ) is a locally optimal solution of MPLCC.

Proof. It suffices to verify that the condition of Lemma 4.1 is satisfied. LetT be
a face ofD satisfying(x̄, ȳ) ∈ T ⊆ F , we will show that

F(x̄, ȳ) 6 f (z)

for anyz ∈ T . First, assume thatL(D) = ∅. Let z be a point inT . Thus there are
a positive integert , λi > 0 andzi ∈ A(z̄) ∩ T for i = 1, . . . , t such that

z = z̄ +
t∑
i=1

λi(zi − z̄). (4.1)

If
∑t

i=1 λi 6 1, letλ0 = 1−∑t
i=1 λi andz0 = z̄. By the assumption of the lemma,

(z− (x̄, ȳ))T∇F(x̄, ȳ) =
t∑
i=0

λi(zi − (x̄, ȳ))T∇F(x̄, ȳ)

> 0.
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By the convexity ofF , we have

F(z) > F(x̄, ȳ).

Now we suppose
∑t

i=1 λi > 1. We have

(x̄, ȳ) = µ0z̄+
t1∑
i=1

µizi +
t2∑

i=t+1

µizi, (4.2)

where

µ0 > 0,

µi > 0, i = 1,2, · · · , t1,
zi ∈ E(S(x̄, ȳ)) ∩ A(z̄), i = 1,2, · · · , t1,

µi > 0, i = t + 1, · · · , t2,
z1 ∈ E(S(x̄, ȳ)) \ A(z̄), i = t + 1, · · · , t2,

and

t1∑
i=0

µi +
t2∑

i=t+1

µi = 1.

Without loss of generality, we can assumet1 6 t . Let µi = 0 for i = t1 +
1, · · · , t, λi = 0 for i = t + 1, · · · , t2 andM =∑t

i=1 λi. By (2), we can replacēz
in (1) by (x̄, ȳ). Therefore,

z = 1

µ0

t2∑
i=1

(µ0λi + (M − 1)µi)(zi − (x̄, ȳ))+ (x̄, ȳ).

Similarly, we can also get

F(z) > F(x̄, ȳ).

So, in this case, the condition of Lemma 4.1 is satisfied.
We now consider the case thatL(D) 6= ∅. Note that for anyz ∈ T , we have

z ∈ conv(E(d))+ cone(L(D)).

Then we havẽz1 ∈ conv(E(D)) andz̃2 ∈ cone(L(D)) such thatz = z̃1+ z̃2. From
the above proof, we know that

(z̃1− (x̄, ȳ))T∇F(x̄, ȳ) > 0.

Similarly, we can also prove

(z̃2− (x̄, ȳ))T∇F(x̄, ȳ) > 0.
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Hence, we again have

F(z) > F(x̄, ȳ).

This completes the proof. 2
Now, we can state our main result as follows.

THEOREM 4.1.Algorithm 3.1 finds a locally optimal solution of MPLCC in a
finite number of iterations.

Proof. At each iteration, the algorithm generates a new iterative point which is
a globally optimal solution of the objective functionF(x, y) restricted in a face of
D. BecauseD has only a finite number of faces and every face ofD is checked at
most once, the algorithm terminates after a finite number of iterations. By Lemmas
4.1 and 4.2, the final iterative point generated by the algorithm is a locally optimal
solution of MPLCC. 2
5. A Subproblem

In this section, we will discuss a subproblem of Algorithms 3.1, that is, when a
convex subsetH of F is given, how to constructS(H), i.e., the smallest faceT of
D satisfyingH ⊆ T ?

For convenience, we rewriteD in the following form:

D = {z|Gz 6 b̄},
wherez = (x, y) andG is a(p + 2m)× (n+m) matrix. For anyz ∈ D, let

I (z) = {i|Giz = b̄i , i = 1, · · · , p + 2m}
and

J (z) = {i|Giz < b̄i, i = 1, · · · , p + 2m},
whereGi andb̄i are thei-th row ofG andb̄, respectively.

We have the following theorem.

THEOREM 5.1.For any convex subsetH ofD and az̄ ∈ ri(H),

S(H) = {z|GI(z̄)z = b̄I (z̃), GJ(z̃)z 6 b̄J (z̄)},
whereGJ(z̄) and b̄J (z̄) are the submatrices consisting of the rows ofG and b̄,
respectively, with the indexes inJ (z̄), and so areGI(z̄) andb̄I (z̄).

Proof.Let

S̄ = {z|GI(z̄)z = b̄I (z̄), GJ(z̄)z 6 b̄J (z̄)}.



354 JIANZHONG ZHANG AND GUOSHAN LIU

First, we will show thatS(H) ⊆ S̄. Certainly, we havēz ∈ S̄. It is easy to verify
that S̄ is a face ofD. Therefore,S(H) ⊆ S̄. On the other hand, it is not difficult to
show thatz̄ ∈ ri(S̄). For any faceS̃ of D satisfyingH ⊆ S̃, we have that̄S ⊆ S̃.
Therefore,S̄ = S(H). The proof is completed. 2

According to the Theorem, when an interior point is known, the smallest face
can be explicitly characterized, and then the subproblem can be solved. Generally
speaking, it is not a trivial task to obtain an interior point of a convex set. For-
tunately, we need to consider only some special convex sets such as points and
segments in Algorithm 3.1.

6. A New PSQP Algorithm for Solving MPLCC

In Section 4, we proved that Algorithm 3.1 converges to a locally optimal solution
of MPLCC in finite iterations. However, we possibly need to solve a nonlinear
mathematical programming problem at each iteration. In this section, using the
extreme point technique introduced in Section 3, we give a new PSQP algorithm for
solving MPLCC in which we need only to solve a quadratic programming problem
in each iteration.

ALGORITHM 6.1.

Step 0. Find an initial feasible solution(x0, y0) of MPLCC, give a positive definite
matrixB0 ∈ R(n+m)×(n+m) and letk = 0.

Step 1. Solve the following linear programming problem:

min
x,y

(x − xk, , y − yk)T∇F(xk, yk)
s.t. (x, y) ∈ S(xk, yk).

Let z̃k = (x̃k, ỹk) be a basic solution of the above linear programming prob-
lem.

Step 2. SetAk = ∅.
Step 3. If A(z̃k) ∩ F = Ak , then go to Step 8.
Step 4. Take az̄ ∈ (A(z̃k) ∩ F ) \Ak .
Step 5. If F(z̄) < F(xk, yk), then set̃zk+1 = (xk+1, yk+1) = z̄, k = k + 1 and go

to Step 2.
Step 6. If (z̄− (xk, yk))T∇F(xk, yk) > 0, then setAk = Ak ∪{z̄} and go to Step 3.
Step 7. If 1

2((xk, yk)+ z̄) /∈ F , then setAk = Ak ∪ {z̄} and go to Step 3; otherwise
go to Step 13.

Step 8. LetLk = ∅.
Step 9. If Lk = L(D), then stop.
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Step 10.Take az̄ ∈ L(D) \ Lk.
Step 11. If {(xk, yk)+ λz̄|λ > 0} * F , then letLk = Lk ∪ {z̄} and go to Step 9.
Step 12. If z̄T∇F(xk, yk) > 0, then letLk = Lk ∪ {z̄} and go to Step 9.
Step 13.Choose a faceT of D satisfying 1

2((xk, yk) + z̄) ∈ T ⊆ F if z̄ ∈ E(D)
or (xk, yk) + z̄ ∈ T ⊆ F if z̄ ∈ L(D), then solve the following quadratic
programming problem(QP )T

min
x,y

(x − xk, y − yk)T∇F(xk, yk)+ 1

2
(x − xk, y − yk)T Bk(x − xk, y − yk)

s.t. (x, y) ∈ T .

Let zk be a solution of the above quadratic programming problem and set

(xk+1, yk+1) = (xk, yk)+ zk.

AdjustBk+1, let k = k + 1 and go to Step 1.

In the above algorithm, we can adjustBk according to the rules given in ex-
isting sequential quadratic programming algorithms for solving standard nonlinear
programming problems. We have the following results.

THEOREM 6.1.If Algorithm 6.1 stops in a finite number of iterations, then it must
stop at a locally optimal point of MPLCC.

The main idea of Algorithm 6.1 is the same as that of PSQP algorithms ([8,
9, 13]), i.e., they all solve a linearized subproblem on an appropriate piece of the
original problem. Hence Algorithm 6.1 also possesses the advantage of the existing
PSQP algorithms such as superlinear convergence under some conditions. The only
difference of Algorithm 6.1 from the existing PSQP algorithms is that we give a
new method for choosing the piece which is required in the algorithm and we do
not need to search all pieces. However, just like other PSQP algorithms for solv-
ing mathematical programming problem with equilibrium constraints, Algorithm
6.1 may not be globally convergent, while Algorithm 3.1 is globally and finitely
terminated. By introducing the extreme point technique into PSQP algorithms, the
efficiency of the PSQP algorithms can be enhanced.

7. Numerical Tests

In order to investigate the efficiency of the algorithms proposed in this paper, in
a PC with celeron 300A CPU, 64M ram and 6.4G hard disk, we have imple-
mented the algorithms given in this paper by using MATLAB and tested some
randonly generated QPLCC, i.e., quadratic programs with linear complementarity
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constraints, which can be written as the following form:

(QPLCC)min
x,y

F (x, y) = 1

2

[
x

y

]T
C

[
x

y

]
+ cT

[
x

y

]
,

s.t. A1x + B1y = b1,

A2x + B2y + z = b2,

yT z = 0,

x > 0, y > 0, z > 0,

wherec ∈ Rn+m, C ∈ R(n+m)×(n+m), b1 ∈ Rp, b2 ∈ Rm, A1 ∈ Rp×n, A2 ∈ Rm×n,
B1 ∈ Rp×m andB2 ∈ Rm×m.

In fact, there is a well designed program [7] which can randomly produce
QPLCC type of test problems. When we deal with QPLCC, Algorithm, 3.1 and
Algorithm 6.1 reduce to the same form and both are globally convergent and stop
in a finite number of iterations.

The program for solving QPLCC consists of the following four subprograms:
(i) A subprogram for generating test problems. First, we randonly generatex0,

y0, z0, c, C, A1, A2, B1 andB2 satisfying thatx0 > 0, y0 > 0, z0 > 0 with
yT0 z0 = 0, andC is positive definite. Then, setb1 = A1x0 + B1y0 and b2 =
A2x0 + B2y0 + z0. Let I (x0) = {i|(x0)i = 0, i = 1, · · · , n}, I (y0) = {i|(y0)i =
0, i = 1, · · · ,m}, I (z0) = {i|(z0)i = 0, i = 1, · · · ,m}, and solve the quadratic
programming problem:

min
x,y,z

1

2

[
x

y

]T
C

[
x

y

]
+ cT

[
x

y

]
,

s.t. A1x + B1y = b1,

A2x + B2y + z = b2,

x > 0, y > 0, z > 0,

xI (x0) = 0, yI (y0) = 0, zI (z0) = 0

by the subroutine in MATLAB to get the initial iterative point.
(ii) A subprogram for finding an extreme point. For a given iterative point

(xk, yk, zk), solve the following linear programming problem by Simplex method:

min
x,y,z

cT
[
x

y

]
,

s.t. A1x + B1y = b1,

A2x + B2y + z = b2,

x > 0, y > 0, z > 0,

xI (xk) = 0, yI (yk) = 0, zI (zk) = 0,

and get its basic solution(x̄k, ȳk, z̄k) and the index set̃Bk for the basic variables.
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(iii) A subprogram for finding a feasible descent direction. As we know,(x̄k, ȳk, z̄k)

above is also a basic solution of the following linear programming problem:

min
x,y,z

(c + C
[
xk
yk

]
)T
[
x

y

]
,

s.t. A1x + B1y = b1,

A2x + B2y + z = b2,

x > 0, y > 0, z > 0.

With Simplex method, for each feasible basic solution adjacent to(x̄k, ȳk, z̄k) of
the above problem, verify that if the basic solution can provide a feasible descent
direction for the problem QPLCC, and for each extreme direction, verify that if
this extreme direction provides a feasible descent direction. If no feasible descent
direction for the problem QPLCC can be found, then the algorithm terminates and
a locally optimal solution of QPLCC is found. Otherwise a new feasible solu-
tion (x̃k, ỹk, z̃k) of QPLCC has been found, which provides a descent direction
at (xk, yk, zk).

(iv) The generation of the next iterative point. For given(x̃k, ỹk, z̃k), solve the
following quadratic programming problem

min
x,y,z

1

2

[
x

y

]T
C

[
x

y

]
+ cT

[
x

y

]
,

s.t. A1x + B1y = b1,

A2x + B2y + z = b2,

x > 0, y > 0, z > 0,

xI (x̃k) = 0, yI (ỹk) = 0, zI (z̃k) = 0,

and let its solution be the next iterative point.
In the above, we stated the main idea of our code for solving QPLCC. Now, we

list the result of our numerical tests (Table 1).
In the numerical experiment, problems are randomly produced in the computer.

From the numerical results, we know that the time spent on finding descent faces
is between 10–20% of the total running time. In fact, at each iteration of our PSQP
algorithm, the computation effort is mainly spent on solving three subproblems,
one of them is to solve a linear program, the second is to find a descent face or to
conclude that a locally optimal solution is found. The third is to solve a quadratic
program. Hence, the main difficulty to solve a QPLCC is to solve the quadratic
program that occurs in the algorithm.

In order to observe the impact of degeneracy of the linear complementarity
constraint in QPLCC to the efficiency of the algorithm, we have made another
experiment by giving an initial feasible solution of QPLCC with a fixed degree of
degeneracy. Then we try to find a new feasible descent direction or conclude that
this solution is a locally optimal solution. We choosem = 40,n = 60,p = 30 and
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Table 1. Numerical results for the first experiment

min max mean std

n=10 time I 0.1300 0.5500 0.2054 0.0755

m=15 time II 0.0200 0.1000 0.0451 0.0148

p=8 ratio 0.1111 0.3478 0.2250 0.0480

r=100 iterations 1.0000 4.0000 1.1700 0.4935

min max mean std

n=20 time I 0.4100 4.8400 1.0431 0.8727

m=30 time II 0.0600 0.7500 0.1926 0.1450

p=15 ratio 0.1258 0.3455 0.1957 0.0326

r=100 iterations 1.0000 9.0000 2.2200 1.7383

min max mean std

n=40 time I 2.4100 124.02 13.024 13.915

m=60 time II 0.3500 15.360 1.6661 1.7084

p=30 ratio 0.1000 0.1935 0.1347 0.0188

r=100 iterations 1.0000 40.000 6.1000 5.6309

min max mean std

n=60 time I 6.9400 510.11 108.35 94.580

m=80 time II 0.7400 58.810 11.791 10.727

p=40 ratio 0.0895 0.1257 0.1080 0.0083

r=100 iterations 1.0000 75.000 18.860 14.536

min max mean std

n=80 time I 26.220 917.07 353.49 234.12

m=100 time II 3.6200 135.90 40.679 29.301

p=60 ratio 0.0994 0.1482 0.1131 0.0098

r=50 iterations 1.0000 52.000 20.020 13.461

min max mean std

n=100 time I 104.06 936.92 480.70 360.16

m=120 time II 11.150 106.99 54.595 41.137

p=80 ratio 0.1071 0.1190 0.1126 0.0042

r=50 iterations 5.0000 48.000 21.833 41.137

time I – the total time needed to solve a QPLCC (unit:second);
time II – the total time needed to find descent faces for solving a
QPLCC (unit:second);
ratio – (time II)/(time I);
iterations – the number of iterations needed to solve a QPLCC;
r – the number of problems solved in the experiment;
std – standard deviation.
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Table 2. Numerical results for the second experiment

num min max mean std

degree=0 total 200 1.8400 2.6000 2.1190 0.1477

optimal 38 2.0800 2.6000 2.2716 0.1161

degree=4 total 200 1.6400 3.6800 1.9089 0.3686

optimal 2 2.1000 2.2000 2.1500 0.0707

degree=8 total 100 1.4600 3.1900 1.9085 0.5532

optimal 1 1.8000 1.8000 1.8000 0

degree=10 total 100 1.3900 1.7400 1.4908 0.0743

optimal 1 1.7400 1.7400 1.7400 0

consider different degrees of degeneracy. We have the following results about the
time needed to verify a locally optimal solution or to find a new descent direction
(Table 2).

In Table 2 ‘num’ means the number of problems tested, ‘total’ means for all
problems tested and ‘optimal’ means for the problems in which the given initial
point is a locally optimal solution. The time unit in the table is still second.

As shown in the above table, the degree of degeneracy does not affect too much
the time spent on verifying local optimality or finding a new descent direction.

8. Conclusions

In Algorithm 3.1, the basic idea of the extreme point algorithm for linear-quadratic
bilevel programming problems such as that discussed in Vicente et al. [15] is exten-
ded to deal with MPLCC in which the upper level objective function is not concave.
In Algorithm 3.1, in order to produce a feasible descent face ofD, we do not need
to check every feasible face which includes the iterative point. Instead, we need
to check only all feasible extreme directions and the extreme points adjacent to an
extreme point which is relevant to the iterative point.

By introducing this extreme point technique to PSQP algorithms, we proposed
a new PSQP algorithm, i.e., Algorithm 6.1, which possesses the advantages of both
PSQP algorithms for solving MPEC and the extreme point algorithms for solving
linear MPEC.

More important, we proposed a method to choose a descent face or a linear
piece which is needed in some algorithms for solving MPLCC, and the efficiency of
some existing algorithms for solving MPLCC can be improved. This method may
also be hopeful to provide an alternative way to find a descent direction for PSQP
algorithms in more general cases. The numerical tests given in Section 7 reveal
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that, although the descent direction finding subproblem in PSQP algorithms is NP-
Hard, we spent only about 15% of the total time in the descent direction finding
subproblem when we solved the randomly generated middle scale problems. This
also means that PSQP algorithms are very promising for solving MPEC.
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10. Appendix

In the proof of Lemma 4.2, the following fact has been used and we restate it
without giving the proof here.

LEMMA. Assume thatD is a polyhedral set and̄z ∈ E(D), for anyz ∈ D, there
are positive integerst1 andt2 with t1 6 t2, λi > 0 for i = 1, . . . , t2, zi ∈ A(z̄)∩D
for i = 1, . . . , t1 andzi ∈ L(D) for i with t1 + 16 i 6 t2 such that

z = z̄ +
t1∑
i=1

λi(zi − z̄)+
t2∑

i=t1+1

λizi.
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